Central Collecting and Evaluating of Major Accidents and Near-Miss-Events in the Federal Republic of Germany
- Results, Experiences, Perspectives-

Hans-Joachim Uth, Federal Environmental Agency
Norbert Wiese, North Rhine-Westphalia State Environment Agency
Part 1:

Notifiable Incidents
-ZEMA-
Zentrale Störfallmelde- und - Auswertestelle

(Central Body for Major Accidents Notification and Evaluation)
Essential Tasks of ZEMA

- Collection, evaluation and forwarding of lessons learnt
- Preparation of the reports to the European Union after SEVESO II Directive
- Collection and evaluation of other international events
- Editing annual reports and instant INTERNET publishing
- Exchange of lessons learnt with other respective organisations.
- Advanced Information Management
What must be reported?

Definition is given in Hazardous Incident Ordinance (2000)

- Major Accidents (with damage to man or environment to certain extend)
- Events with the potential of damage in the neighbourhood
- Events with a significant learning potential
Major Accident Reporting System in Germany

Event

Operator

Competent Authority at local level

Independent Experts

State Ministry for Environment

Federal Ministry for Environment, Natur Conservation and Nuclear Safety

Central Major Accident Notification System (ZEMA) at Federal Environmental Agency

Data Exchange with European Union (MARS)

Other International Bodies

Information

- State Ministries for Environment
- State Ministries for Labour
- State Committee for Pollution Protection (LAI)
- State Committee for Occupational Health and Safety (LASI)
- Commission of European Union

ZEMA-Reports

Public
Registered Events in ZEMA Database (2002)
Total: 369

<table>
<thead>
<tr>
<th>Period under review</th>
<th>Total number</th>
<th>Major Accidents</th>
<th>Disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 - 1992</td>
<td>73</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>1993</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1994</td>
<td>34</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>1995</td>
<td>27</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>1996</td>
<td>30</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>1997</td>
<td>27</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>1998</td>
<td>37</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>1999</td>
<td>41</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>2000</td>
<td>24</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>2001</td>
<td>27</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>(2002)</td>
<td>9</td>
<td>6</td>
<td>3)*</td>
</tr>
</tbody>
</table>

Datacollection not yet compleated
Data Quality

- Further documents in percent
- Time period:
 - 1980/92
 - 1993
 - 1994
 - 1995
 - 1996
 - 1997
 - 1998

Further documents in percent range from 0% to 80%.
Trend of development of Events
Findings
Evaluation of events 1993-2002 (N=313)

• Event Types
Event Types

- Release: 50%
- Fire: 18%
- Explosion: 9%
- Fire and Explosion: 14%
- Fire, Explosion, Release: 9%
Findings

Evaluation of events 1993-2002 (N=313)

Event Type: Release of Substances

In Process Industry:
- Main Cause is equipment Failure during normal operating
- Human Failure restricted to start-off/shut down and maintenance

In other Industry:
- Findings vice versa
Findings
Evaluation of events 1993-2002 (N=313)

Event Type: Explosion and Fire

In Process Industry:
Main Cause is Human Failure

In other Industry:
Main Cause is Equipment failure
Findings
Evaluation of events 1993-2002 (N=313)

- Event Types
- Primary Causes
Primary Causes (1/3)

Statistical Overview

<table>
<thead>
<tr>
<th>Cause</th>
<th>Events in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>human failure (organisational failure)</td>
<td>9</td>
</tr>
<tr>
<td>human failure (operating error)</td>
<td>13</td>
</tr>
<tr>
<td>human failure (during repair works)</td>
<td>2.5</td>
</tr>
<tr>
<td>technical failure (container/flange)</td>
<td>6</td>
</tr>
<tr>
<td>technical failure (devices/mountings)</td>
<td>21</td>
</tr>
<tr>
<td>technical failure (pipes)</td>
<td>3</td>
</tr>
<tr>
<td>technical failure (damage, corrosion)</td>
<td>7</td>
</tr>
<tr>
<td>physical reaction</td>
<td>2.5</td>
</tr>
<tr>
<td>chemical reaction</td>
<td>18</td>
</tr>
<tr>
<td>environmental cause</td>
<td>1</td>
</tr>
<tr>
<td>unknown</td>
<td>9.5</td>
</tr>
</tbody>
</table>

- Unknown cause: 9.5%
- Technical failure (devices/mountings): 37%
- Technical failure (container/flange): 25%
- Physical reaction: 21%
Primary Causes (2/3)

Findings - 1

- Maintenance plays a key role in accident prevention.
- Clear characterisation of the basic chemical reactions is crucial. This applies particularly to areas which are not counted to the core region of chemical industry.
- The high amount of the operating error stresses the needs of intensified qualification and training.
- Since an operating error always reflects the conditions in which the failure occurs, the safety management is also addressed.
Primary Causes (3/3)

Findings - 2

• The observed presence of unknown chemical reactions as a cause for events shows shortcomings in expert knowledge and qualification.

• The analysis shows that unknown chemical reactions in the area of chemical industry are observed mainly during maintenance/repair, at the other areas this is true during "normal operation". Maintenance/repair are carried out often by third parties, often with lack of experience and insufficient knowledge of the conditions in the installation.
General Conclusions (1/2)

• As primary causes you can identify errors in the complex system switching process units. These system connections are often fuzzy in the event and lead to imperfect reactions which often develop to disturbances or accidents. The operating rules did not reflect these relations sufficiently.

• It was recognised in a whole series of events that the operating rules were provided as imperfect or dated and often did not reflect critical operating states.

• During maintenance operations the personal had no sufficient information. Significant communication problems also occurred with serious consequences.
General Conclusions (2/2)

- Lacking expert knowledge was observed not only during maintenance operations but also in some cases incompatible materials were stored or put together, which finally led to irregularities.

- Imperfect operating actions were in particular observed in the case of deviations from routine tasks. These situations should be particularly addressed in the operating instructions and especially considered for training purposes.
Summary and Outlook Part 1

- ZEMA became a reliable source and switching board of information
- Public information via electronic media: www.umweltbundesamt.de/ZEMA/
- Near miss reporting by ZEMA has started
- Compatible Database in European Format and Information Management
Part 2: Non-notifiable Incidents
Lessons learnt from accidents
History

Subcommittee „Incident Evaluation“ (since 2000)

testing in practise (1997 - 1999)
Concept for the registration and evaluation of safety relevant incidents
Information management

incidents reports

e.g. data bases

pool data

safety relevant incidents

topics

other informations e.g. data bases

material

Information management
New insights

- substance properties
- design and fabrication of components
- failure of safety devices/systems
- failure of technical/organisational systems
- efficacy of limiting the consequences of accidents
Content of incident reports

- plant description
- event description
- consequences
- substances involved
- causes
- emergency measures taken
- measures drawn by the operator or the authority to avoid such incidents in the future
- lessons learnt
Information management
Waste Gas Pipes
SFK-GS-20 (appendix)
www.sfk-taa.de

Obstructions of Pipes
SFK-GS-39
www.sfk-taa.de

hazards
consequences
measures
incident reports

making sensitive for risks caused by deviations from
- normal process conditions
- mistakes in planning and maintenance

Brochures
Experiences

- 139 incident reports, 23 safety relevant incidents
- voluntary reports
- operators fear with regard to tightening up of regulations
- human failure respectively disregard of regulations as a numerous cause
- 2 crucial points identified

Outlook

- improvement of data flow
- more data sources
- improvement of data base
- identification of further crucial points
- publicity

Summary and Outlook Part 2